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Abstract
We consider a fermionic determinant associated with a non-covariant quantum
field theory used to describe a non-relativistic system in (1+1) dimensions. By
exploiting the freedom that arises when Lorentz invariance is not mandatory,
we determine the heat-kernel regulating operator so as to reproduce the correct
dispersion relations of the bosonic excitations. We also derive the Hamiltonian
of the functionally bosonized model and the corresponding currents. In this
way, we were able to establish the precise heat-kernel regularization that yields
complete agreement between the path-integral and operational approaches to
the bosonization of the Tomonaga–Luttinger model.

PACS numbers: 11.10.Ef, 71.10.Pm, 05.30.Fk

1. Introduction

Fermionic determinants play a central role in modern formulations of quantum field theories
(QFTs). In particular, they arise in the path-integral formulation of fermionic models [1]. In
the last 20 years it has been especially fruitful in the study of fermionic determinants in (1 + 1)
dimensions. Fujikawa’s observation concerning the non-triviality of the Jacobian associated
with chiral changes in the fermionic functional integration measure [2], when specialized to
the (1 + 1)-dimensional case, led to significant advances in our understanding of paradigmatic
‘toy-models’ such as two-dimensional quantum electrodynamics (QED2), the Thirring model
and their non-Abelian versions [3]. In fact, a functional bosonization technique was developed
on the basis of an adequate treatment of the fermionic determinant [4]. The crucial point is that
the above-mentioned Jacobian needs a regularization. For gauge theories with Dirac fermions
one is naturally led to consider a regularization scheme that preserves gauge invariance. On
the other hand, when the vector fields which are present in the theory are just auxiliary fields
(usually introduced through a Hubbard–Stratonovich transformation), one can choose a more
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general regulator [5, 6]. The Thirring model [7] and the chiral Schwinger model [8] are the
examples in which regularization ambiguities take place.

The regularization of the Fujikawa Jacobian and its role in the analysis of quantum
anomalies have been extensively examined in the literature [9]. In all the cases the models
under study are relativistic QFTs, i.e. Lorentz covariant theories. However, in certain relevant
situations one is interested in non-covariant field theories. This is the case in the analysis of
one-dimensional (1D) electronic systems which can be studied through the g-ology model [10],
a theory with four coupling constants g1, . . . , g4 associated with different scattering processes
(for g1 = g3 = 0 it reduces to a low-energy model for electrons known as the Tomonaga–
Luttinger model (TLM) [11]). In this context, the existence of a functional bosonization,
alternative to the usual operator approach, was first suggested by Fogedby [12] and further
elaborated by Lee and Chen [13]. The explicit connection between the functional bosonization
leading to an effective action describing the dynamics of bosonic collective excitations and the
Fujikawa Jacobian was first established in [14]. But even in this case a covariant regularization,
borrowed from relativistic field theory, was employed. As a result, the general expressions
for the dispersion relations of the bosonic modes, in terms of the couplings g2 and g4 of the
TLM, did not agree with those obtained through conventional, operational bosonization. In
this work we show that the origin of this disagreement is in the type of regularization chosen
to compute the Fujikawa Jacobian. Since the underlying Lorentz invariance is violated, an
almost arbitrary number of regularization schemes seems possible. Only one of them leads to
the usual result for the TLM.

In section 2 we present the model and express its generating functional in terms of a
fermionic determinant. In section 3, in order to clarify the discussion, we start by sketching
the main steps of the decoupling approach to bosonization and the results obtained using a
standard Lorentz invariant regularization. We then include two subsections 3.1 and 3.2 where
we present two different non-covariant regularizations, the point-splitting and the heat-kernel
methods, respectively. In this last case we determine the precise form of the regulating heat-
kernel operator needed to obtain the right answer for the dispersion relations. We would like to
stress that we were not able to identify a physical guiding principle to choose a priori between
different regularization schemes. However, as far as we know, such a principle is still not
clarified even in the operational bosonization of condensed matter theories. Of course, this is
an important issue that deserves further investigations. In section 4 we show how to derive,
in our functional bosonization framework, the bosonic Hamiltonian and the corresponding
bosonized currents. Finally, we briefly discuss the issue of current conservation. In section 5
we gather our results and conclusions.

2. The model and the fermionic determinant

We will consider a non-covariant version of the Thirring model defined by the following
Euclidean Lagrangian:

L = ψ̄ i∂/ψ − g2

2
V(µ)jµjµ, (1)

where V0 and V1 are the coupling constants, and the derivatives are redefined in order to
include the Fermi velocity,

∂0 = ∂

∂x0
(2)

∂1 = vF
∂

∂x1
. (3)
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Note that vF plays the role of the light velocity in QFT, which is usually taken as unit. For
vF = 1 and V0 = V1 = 1, one has the usual Thirring model (the constant g2 is included to
facilitate comparison with the Lorentz invariant results). The fermionic current is defined as

jµ = ψ̄γµψ, (4)

which satisfies the classical conservation law

∂µjµ = 0. (5)

The generating functional is

Z[S] =
∫

Dψ̄Dψ exp

[
−

∫
d2x(L + jµSµ)

]
. (6)

By means of a Hubbard–Stratonovich transformation, it can be put in the form

Z[S] = N
∫

DAµ det D/ [A] exp

[
− 1

2g2

∫
d2x d2yV −1

(µ)

× (x − y)(gAµ − Sµ)(x)(gAµ − Sµ)(y)

]
, (7)

where

D/ [A] = i∂/ + gA/, (8)

and

det D/ [A] =
∫

Dψ̄Dψ exp

[
−

∫
d2xψ̄D/ [A]ψ

]
. (9)

3. Decoupling approach to bosonization

Having expressed the generating functional in terms of a fermionic determinant, we shall now
sketch the decoupling method which is at the root of the functional approach to bosonization
pioneered in [3] (see also [4]). In (1 + 1) space–time the vector field Aµ can be decomposed
into transverse and longitudinal parts:

Aµ = −(1/g)(εµν∂νφ − ∂µη), (10)

where φ and η are scalar fields. Let us note that if we perform the following transformation in
the fermionic fields:

ψ = et[γ5φ+iη]χ (11)

ψ̄ = et[γ5φ−iη]χ̄ , (12)

then the fermionic Lagrangian density changes as

ψ̄D/ [A]ψ = χ̄D/ t [A]χ (13)

where

D/ t [A] = D/ [(1 − t)A]. (14)

As first observed by Fujikawa [2], the Jacobian associated with the above change in the
path integration measure is not trivial, but depends on the fields φ and η:

det(i∂/ + gA/) = J [φ, η; t] det(i∂/ + g(1 − t)A/). (15)
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Note that for t = 1, the fermionic and bosonic degrees of freedom become completely
decoupled. It can be shown that

J [φ, η; 1] ≡ J = exp

[
−

∫ 1

0
ω(t)

]
(16)

with

ω(t) = −tr D/ t [A]−1gA/ = − lim
y→x

trD
∫

d2xD/ t [A]−1(x, y)gA/(x), (17)

where trD means the trace in the Dirac space. All these formulae form a close analogy with
those corresponding to a covariant QFT. Actually the only difference between them is the
presence of vF instead of the velocity of light, but this has non-trivial implications. The
last equation has to be regularized, otherwise divergences appear, as is obvious by taking
the y → x limit. In QFT, any acceptable regularizing method has to be Lorentz invariant.
In the present case we do not have that limitation for two reasons: (i) Lorentz invariance is
broken from the beginning since we are in a non-relativistic theory; (ii) there is a remaining
covariance, i.e. the theory without interactions is invariant with respect to the Lorentz group
where the velocity of light has been replaced by vF, but this is an artificial symmetry and there
is no reason to respect it. Moreover, by taking V0 �= V1 (g2 �= g4) not even this symmetry
is present. Before taking advantage of the freedom arising from the absence of covariance, it
could be instructive to recall the results previously obtained by choosing a Lorentz invariant
regularization [14]. Using a regulator of the form

(D/ t [A]D/ t [A]† + D/ t [A]†D/ t [A])/2, (18)

which was first proposed by Fujikawa in his analysis of covariant and consistent anomalies
[15], one gets

Jcov = exp

{
− a

2πvF

∫
d2x[(∂1φ)2 + (∂0φ)2]

}
, (19)

where a is a parameter related to possible regularization ambiguities. For a = 1, one has
a gauge invariant regularization. Although the Thirring model does not possess local gauge
invariance, in the present context we are mainly interested in Lorentz invariance and we
can then set a = 1 without loss of generality. Inserting Jcov in the generating functional
and expressing Aµ in terms of φ and η according to equation (10), one obtains a bosonized
action. In the condensed-matter context these bosonic degrees of freedom are interpreted as
fields associated to charge-density oscillations. From this bosonic action derived through a
covariance-preserving regularization, one can easily compute the corresponding dispersion
relation:

p2
0 + v2

covp
2
1 = 0 (20)

where

v2
cov = v2

F

(
vF + g2V0

π

)
(
vF + g2V1

π

) . (21)

Let us stress that only for V1 = 0 this velocity agrees with the value obtained by using
operational bosonization, which reads

v2 =
(

vF − V1g
2

π

) (
vF +

V0g
2

π

)
. (22)

We shall now describe two different methods to regularize the Jacobian that do not preserve
Lorentz invariance. Both techniques lead to an effective bosonic action containing the right
answer for the dispersion relation.
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3.1. Point-splitting method

As is well known, the point-splitting regularization method breaks Lorentz invariance
explicitly. It consists in a prescription for taking the y → x limit mentioned before by
defining

lim
y→x

D/ t [A]−1(x, y) = 1
2 ( lim

ε→0+
+ lim

ε→0−
)D/ t [A]−1(x0, x1; x0, x1 + ε), (23)

i.e. by taking a symmetric limit in the space variable. We need then the Green function of the
Dirac operator, which satisfies

D/ t [A]xD/ t [A]−1(x, y) = δ2(x − y). (24)

As usual, we propose the ansatz

D/ t [A]−1(x, y) = exp((1 − t)[γ5φ(x) + iη(x)])G0(x, y) exp((1 − t)[γ5φ(y) − iη(y)]),

(25)

where G0 is the Green function of the free Dirac operator:

i∂/xG0(x, y) = δ2(x − y). (26)

With this recipe, we find for equation (23) the following result:

lim
y→x

D/ t [A]−1(x, y) = − i

2πvF
(1 − t)γ1∂1[γ5φ(x) − iη(x)] (27)

and then, the Jacobian (equations (16) and (17)) is given by

J = exp

{
− 1

2πvF

∫
d2x[(∂1φ)2 − (∂1η)2 − 2∂1φ∂0η]

}
. (28)

The vacuum functional can then be written as

Z[S = 0] = N
∫

DφDη e−Seff (29)

where N is a normalization factor that includes the free fermion (interaction independent)
determinant. We have also defined Seff , which in momentum space takes the form

Seff =
∫

d2p

(2π)2
[φ(p)Aφ(−p) + η(p)Bη(−p) + 2φ(p)Cη(−p)], (30)

with

A = v2
Fp

2
1

(
1

2g2V0
+

1

2πvF

)
+

p2
0

2g2V1
(31)

B = v2
Fp

2
1

(
1

2g2V1
− 1

2πvF

)
+

p2
0

2g2V0
(32)

C = p1p0vF

(
1

2g2V1
− 1

2g2V0
− 1

2πvF

)
. (33)

The physical content of the model can be extracted from Seff which describes the dynamics
of the collective modes of the system. When the original fermionic model is related to the
Tomonaga–Luttinger model used to study one-dimensional electronic systems [11], these
collective excitations correspond to charge-density oscillations (plasmons). Their dispersion
relation can be obtained as the zeros of the determinant of the matrix(

A C

C B

)
. (34)

The result is

p2
0 + v2p2

1 = 0 (35)

where v is the renormalized velocity of the charge-density modes given by equation (22).
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3.2. Heat-kernel method

Another popular way of dealing with the regularization of fermionic determinants is the heat-
kernel method [2, 16]. In this scheme J is regulated by inserting an operator of the form
e−R/M2

, R is a positive definite operator and M is a mass-like parameter which is kept fixed
in the intermediate computations. The limit M2 → ∞ is taken at the end. Again, let us
emphasize that in standard QFT contexts the regulating operator R can be chosen among all
operators compatible with Lorentz invariance (set aside, for the moment, any other possible
symmetries), for instance R = D/ t [A]2. Here we do not have that limitation, and our purpose is
to find the precise form of R that leads to an effective action containing the desired dispersion
relation.

We start by rewriting equation (17) as

ω(t) = tr{D/ t [A]−1[(γ5φ − iη)D/ t [A] + D/ t [A](γ5φ + iη)]}. (36)

The trace operation is ill defined, and needs to be regularized. We define our regularized
ω as

ω(t)R = lim
M→∞

tr{D/ t [A]−1[(γ5φ − iη)D/ t [A] + D/ t [A](γ5φ + iη)] e−R/M2}. (37)

The choice of R is always dictated by physical considerations. For instance, if we are
considering a gauge theory, we must take into account regularization prescriptions which do
not spoil gauge invariance at the quantum level. This is usually achieved by taking R =
D/ t [A]2, where Aµ is the gauge field. Here, the model under study is not a gauge theory and,
therefore, we have even more freedom to choose the regulator. We shall employ an operator
of the form R = D/ t [B]2, where Bµ is certain vector field to be determined. We can write
ω(t)R as ω(t)R = ω0(t) + ωnc(t) where

ω0(t) = tr
(
2γ5φ e−R/M2)

(38)

ωnc(t) = tr
{
D/ t [A]−1(γ5φ − iη)

[
D/ t [A], e−R/M2]}

. (39)

Here the subscript 0 indicates the term that we would have obtained if we had employed the
cyclic property of the trace in equation (36). The subscript nc refers to a ‘non-cyclic’ term
(this issue is discussed in detail [6]). The final expressions for these two terms are

ω0(t) = −(1 − t)
g

π

∫
d2xφεµν∂µBν (40)

ωnc(t) = −(1 − t)
g

2π

∫
d2x∂µ(Bν − Aν)(ενµφ + δνµη). (41)

At this point it is straightforward to check that taking

B0 = A0 (42)

B1 = −A1, (43)

we get the same results obtained in the previous section (equations (28)–(34)). Thus, we
have found an explicit form for the regulating operator of a Jacobian associated with a non-
covariant fermionic determinant. This form, in turn, leads to the correct dispersion relation
for the Tomonaga–Luttinger model. This is our main result. Let us mention that the non-
covariant Jacobian given by equation (28) has been employed as an ansatz in previous works
on functional bosonization of Luttinger liquids [17]. The derivation of this Jacobian was one
of the principal motivations of the present work.
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4. Bosonized Hamiltonian and currents

Up to this point we have worked in the Lagrangian formulation, but in condensed-matter
applications the Hamiltonian framework is frequently preferred. It is then desirable to
show how to derive, in the functional bosonization framework discussed in this paper, the
usual Hamiltonian for the one-dimensional electronic system, i.e. the bosonic form of the
Tomonaga–Luttinger model [11]. The other point we address in this section is the bosonic
form of the original fermionic currents (charge-density and electrical current) and the issue of
conservation.

Taking into account the expression for det D/ [A] calculated in the preceding sections, and
the relation between the φ and η fields and the Aµ fields (equation (10)), we can express the
generating functional (7) in terms of the Aµ field:

Z[S] = N
∫

DAµ exp

(
−1

2

∫
d2x d2yAµ(x)Dµν(x − y)Aν(y)

)

× exp

(
− 1

2g2

∫
d2x d2ySµ(x)V −1

(µ) (x − y)Sµ(y)

)

× exp

(
− 1

g

∫
d2x d2yAµ(x)V −1

(µ) (x − y)Sµ(y)

)
, (44)

where Dµν is given in Fourier space by

Dµν(p) = g2

π
(
p2

0 + v2
Fp

2
1

) (
vFp

2
1 p0p1

p0p1 −vFp
2
1

)
+

(
1
V0

0

0 1
V1

)
. (45)

We can decouple the Aµ field from the source Sµ by the usual procedure of performing a
translation in the Aµ field:

Aµ → Aµ +
D−1

µν Sν

gV(ν)

, (46)

obtaining

Z[S] = N
∫

DAµ exp

(
−1

2

∫
d2x d2yAµ(x)Dµν(x − y)Aν(y)

)

× exp

[
1

2

∫
d2x d2ySµ(x)�−1

µν (x − y)Sν(y)

]
(47)

where �−1
µν is given in Fourier space by

�−1
µν (p) = 1

π
(
p2

0 + v2p2
1

) (−Kvp2
1 p0p1

p0p1
v
K

p2
1

)
, (48)

and the stiffness constant K is given by

K =
√

vF − g2V1/π

vF + g2V0/π
. (49)

We can multiply and divide by∫
DAµ exp

(
−1

2

∫
d2x d2yAµ(x)�µν(x − y)Aν(y)

)
, (50)

and perform an additional translation in the Aµ field

Aµ → Aµ + �−1
µνSν, (51)
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to obtain

Z[S] = Ñ
∫

DAµ exp

(
−1

2

∫
d2x d2yAµ(x)�µν(x − y)Aν(y) +

∫
d2xSµ(x)Aµ(x)

)
.

(52)

Finally, by defining the fields ϕ and θ in the following way:

A0 = −1√
π

∂xϕ (53)

A1 = i√
π

∂xθ, (54)

we end up with the following generating functional:

Z[S] = N̄
∫

DϕDθ exp

(
−1

2

∫
dx dτ

[ v

K
(∂xϕ)2 + vK(∂xθ)2 + 2i∂xθ∂τϕ

])

× exp

(∫
dx dτ [−S0∂xϕ/

√
π + iS1∂xθ/

√
π]

)
. (55)

We then naturally identify the ϕ field with the charge-density mode of the system and
� = ∂xθ as its canonical conjugate field. Moreover, the first two terms in the quadratic action
of the previous expression can be identified with the Hamiltonian of the system:

H = 1

2

∫
dx

[ v

K
(∂xϕ)2 + vK(∂xθ)2

]
, (56)

which exactly coincides with the Hamiltonian obtained using standard operational
bosonization [11]. Now, by functional derivation we get the bosonic form of the currents

j0 = −1√
π

∂xϕ (57)

j1 = i√
π

�, (58)

which, of course, are identical to those obtained in the operator approach. It is important to
stress that these currents do not obey the continuity equation. Following [17], one introduces
a physical electric current j , which is in general different from j1. The charge density is
identified with j0 (j0 = ρ). The physical current is determined by demanding that the
conservation law be verified:

∂ρ

∂τ
+

∂j

∂x
= 0. (59)

We obtain

j = i√
π

vK�. (60)

Note that only for V1 = 0 (g2 = g4 in the Tomonaga–Luttinger language) one has vK = 1
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and j = j1. As explained in [17], this difference between j and j1 is due to the fact that, in
general, the density does not commute with the interactions.

5. Conclusions

We considered a fermionic determinant associated with a non-covariant field theory. In
particular, we studied the determinant which arises when implementing a path-integral
approach to bosonization based on the decoupling of the fermionic determinant through
appropriate changes of variables in the functional integration measure. The model analysed in
this work (a non-covariant version of the Thirring model) has been previously used to describe
one-dimensional highly correlated electronic systems which display the so-called Luttinger
liquid behaviour.

In the context of the heat-kernel regularization method, by exploiting the freedom
originated in the non-covariance, we determined a regulating operator that yields a bosonic
action which leads to the general form (in terms of the various coupling constants) for the
dispersion relations. These dispersion relations are in full agreement with those that are well
known in the operational framework. Previous path-integral computations had used a covariant
regularization, borrowed from relativistic field theory, which gives a correct spectrum only for
particular values of the coupling constants.

We showed how to derive the bosonized Hamiltonian and currents, which coincide with
those obtained through standard operational bosonization. In this way we were able to establish
the precise heat-kernel regularization that yields complete agreement between the path-integral
and operational approaches to the bosonization of the Tomonaga–Luttinger model.
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